Agenda

• EMC Flash Strategy
• Introduction – Oracle/EMC partnership
• Customer Challenges
• Performance best practices
• Flash Overview
• Hybrid Arrays
• Server Flash
• All Flash Array
• Questions
Memory Lane - Year 2000

3/10/00 Nasdaq hits 5,048

Seagate Introduces the 15K RPM Drive

Y2K
The end is near...

© Copyright 2013 EMC Corporation. All rights reserved.
IT Reality Check – CPU’s vs HDD’s

MOORE’S LAW: 100X PER DECADE

- FLASH Closes The CPU To Storage Gap
- FLASH Follows Moore’s Law And Can Keep Up With CPU Developments

2000 2010 2020

© Copyright 2013 EMC Corporation. All rights reserved.
Why Not Now?
The Solid State Data Center *(not a matter of if, simply when)*
Mobile Devices

BILLIONS OF USERS

HUNDREDS OF MILLIONS OF USERS

MILLIONS OF USERS

THOUSANDS OF APPS

THOUSANDS OF APPS

TENS OF THOUSANDS OF APPS

LAN/Internet Client/Server

PC

Mainframe, Mini Computer Terminals

Source: IDC, 2012
EMC Xtrem Product Portfolio
The Solid State Datacenter has arrived!

XtremIO
RETHINKING CORE DESIGN CRITERIA

- Software-Defined
- Off The Shelf Hardware
- Inherently Balanced
- Linear Scale-Out Architecture
- Flash-Optimized
- “Always On” Data Services

© Copyright 2013 EMC Corporation. All rights reserved.
Oracle Applications Demand Choice

Server Flash (DAS)
- Most Extreme Performance
- Highest Possible IO
- Lowest Possible Latency

Optimized DAS
- Capacity Pooling
- Advanced Availability
- Elastic Scale

Software

All Flash Array
- Use Cases
 - Consistent Performance
 - Random I/O Patterns
 - Highly De-duplicatable Data
- Applications
 - Large Scale VDI
 - Massive Virtual Server
 - Database Test and Dev

Hybrid Array
- Use Cases
 - Balance Cost & Performance
 - Large Data Sets
 - Changing IO Patterns
- Applications
 - Data Warehouses
 - OLTP Databases
 - Cloud Deployments

© Copyright 2013 EMC Corporation. All rights reserved.
EMC’s Flash Everywhere Strategy Delivers Choice

Performance
- Extreme (<100uS)
- High (2-5mS)

EMC’s Flash Everywhere Strategy
- **Server Flash (DAS)**
 - SLC & eMLC PCIe Flash
- **Optimized DAS**
- **All Flash Array**
- **Hybrid Array**
 - VNXe, VNX, VMAX, Isilon

Use Cases
- Consistent Performance
- Random I/O Patterns

Applications
- Large Scale VDI
- Massive Virtual Server

EMC’s Flash Everywhere Strategy Delivers Choice
Why EMC for Oracle

Basic infrastructure advantage
- Availability, *Predictable* Performance & Scalability, Data Integrity, Freedom of choice in configurations
- Information Lifecycle Management, FAST (tiering), Performance
 - Reducing TCO, allowing growth, improving performance, manageability and scalability

Application (Database) cloning
- For backup, firefighting, test/dev/acceptance refresh, DWH loading, app or DB upgrades

Business Continuity
- D/R replication, Backup/Restore, business consistency, enabling stretched HA clusters

Database & App Consolidation
- Improving ROI, improving flexibility, enabling (private) cloud

Security
- Database & storage encryption, key management, Data Leakage Prevention (DLP)

Joint solutions to shorten time to value
- Whitepapers and reference architectures, assessments, Design & Deployment Services

Joint support services to reduce risk
- Joint EMC/Oracle Escalation Center (JEC)

© Copyright 2013 EMC Corporation. All rights reserved.
Customer challenges: Performance

- Still an issue after 40+ years of Moore’s law
- Database sizes still grow
- As do workloads
- Applications don’t always behave
- “Big Data” workloads
Findings from the field (1)

• DBA and storage teams don’t always work well together

• Performance tuning focus on SQL and DB optimization
 – I/O underrated
 – Knowledge gap between DB and storage specialists

• Performance measured at different levels
 – But using deceivingly similar metrics (i.e. response time)

• Best practices often not honored
 – Data layout, striping, block size, etc

• Limited performance tooling and capacity management in place
Findings from the field (2)

- Business expectations don’t match IT
 - Undersized systems
 - Unexpected high peak loads
- Bottlenecks are not known
 - Adding CPU to avoid I/O problem
- Plain wrong architectural decisions
 - Limited up-front research, politics
 - Conservative thinking
- Storage as “black box”
 - “just give me my LUNs”
 - Ignoring storage characteristics such as striping, RAID, disk speed
 - Not using advanced storage features (i.e. snaps/clones, perf. features)
Understanding the whole stack

Users experience different performance than DBAs

DBAs measure different metric than storage admins (but named similar!)

- If batch runs 2 hours, is that a perf issue?
- If CPU peaks 100%, is that a perf issue?
- If I/O wait is 95%, is that a problem?
Understanding I/O wait

- Queuing happens (mostly) on the host
- Having multiple queues is common
- Utilization metric is unreliable

Goal: Remove all I/O bottlenecks. CPU cycles are too expensive to spend waiting. Or idling.

Linux:
```
# iostat -xk 2 /dev/sdX /dev/sdY ...
```

© Copyright 2013 EMC Corporation. All rights reserved.
Databases shouldn’t have high I/O wait

- Adding CPU does not speed up I/O bottlenecks
 - Memory does somewhat
- IOPS are relatively (!) cheap
- CPU cycles are expensive
- Databases have “hot” and “cold” regions
 - No need to make all storage fast
 - Modest amount of Flash will do – if applied correctly
 - Adding 5-10% Flash can boost performance by over 80%
 - YMMV 😊

Make sure the system is CPU bound!
Locality of reference

- Oracle was developed in a time where CPU and memory was expensive (thus limited)
- Disks perform well (both read and write) if you avoid disk head movements (seeks)
 - How many IOs per sec do you get from cheap SATA disk – given sequential 8K reads?
- Therefore database stores related data as close together as possible

⇒ Locality of reference
Oracle Database I/O behavior

- Reads are not always sequential but short sequences and related I/O may happen, i.e. block offsets 1001 → 1002 → 997 → 1004 → 1005 → 1009 (consider B-tree index, range scans)

- Storage caching algorithms can optimize this. Consider all of these blocks share a physical disk track – if we do a seek to get to 1001 let’s then read the whole track in cache. Now the first I/O (1001) has 7ms resp. time, the rest has << 1ms 😊
 - Since 1995, EMC has invested heavily in R&D (i.e. analyze I/O traces etc.) to improve these algorithms
 - Note that tablespace and file system fragmentation, striping and other indirection mechanisms (Volume managers, write-anywhere file system schemes) can ruin your day 😞

- If you have sequential write data it could make sense to assign dedicated disks
 - REDO logs, DWH staging areas
I/O skewing

- Database objects (indexes, tables) tend to grow by appending blocks at the end
- Due to the nature of business processing, the most recently added data (rows) are likely to be retrieved more often
- The oldest data is less likely to be very active
- So we get (slowly moving) hot spots (and respectively, cold spots) in the data
- This is called “skewness” i.e. 80/20 skew means 80% of I/O happens on 20% of the data blocks
- In that case you can reduce seek time on 80% of all I/O requests to be below 1ms – by putting it on FLASH storage (but the devil is in the details)
Flash versus Spinning Disk

<table>
<thead>
<tr>
<th>Spinning disk</th>
<th>Flash Disk (SLC / eMLC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One operation at a time</td>
<td>Parallel operations – any workload</td>
</tr>
<tr>
<td>Mechanical movements required for seeks</td>
<td>No mechanical parts</td>
</tr>
<tr>
<td>Cannot handle high utilization well</td>
<td>High utilization is fine</td>
</tr>
<tr>
<td>Reads perform like writes – no need for zero out before write</td>
<td>Writes require clearing out flash regions first – sustained writes may cause degraded perf</td>
</tr>
<tr>
<td>Sweet spot: sequential R/W</td>
<td>Sweet spot: random read</td>
</tr>
<tr>
<td>I/O directly relates to physical offset on disk</td>
<td>I/O offset obfuscated due to wear leveling</td>
</tr>
<tr>
<td>Typical resp. time ~ 7 ms</td>
<td>Typical resp. time ~ 0.5 ms</td>
</tr>
<tr>
<td>Random IOPS ~ 150</td>
<td>Random IOPS ~ 3000 (depends!)</td>
</tr>
<tr>
<td>Bandwidth ~ 70 MB/S (sequential read/write)</td>
<td>Bandwidth ~ 70 MB/s (sequential read)</td>
</tr>
<tr>
<td>Wears out by age, not usage</td>
<td>Wears out by (overwrite) usage</td>
</tr>
<tr>
<td>No wear leveling required</td>
<td>Needs wear leveling</td>
</tr>
<tr>
<td>Requires caching algorithms for (random) performance</td>
<td>Requires caching algorithms for (write) performance + endurance</td>
</tr>
</tbody>
</table>

© Copyright 2013 EMC Corporation. All rights reserved.
Access times of storage media

Typical relative speeds of components (2013)

1ns = 1s

<table>
<thead>
<tr>
<th>Access type</th>
<th>Typical Cycle Time (nanoseconds)</th>
<th>Cycle time (s)</th>
<th>Scaled Cycle Time (scale = 10^9)</th>
<th>Typical Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoided IO</td>
<td>Zero</td>
<td>Zero</td>
<td>Zero</td>
<td>-</td>
</tr>
<tr>
<td>CPU clock (2.5 GHz)</td>
<td>0.4</td>
<td>4 x 10^{-10}</td>
<td>0.4 seconds</td>
<td>-</td>
</tr>
<tr>
<td>L1 cache</td>
<td>2</td>
<td>2 x 10^{-9}</td>
<td>2 seconds</td>
<td>64KB</td>
</tr>
<tr>
<td>L2 cache</td>
<td>4</td>
<td>4 x 10^{-9}</td>
<td>4 seconds</td>
<td>256KB</td>
</tr>
<tr>
<td>L3 cache</td>
<td>25</td>
<td>25 x 10^{-9}</td>
<td>25 seconds</td>
<td>4 MB</td>
</tr>
<tr>
<td>DRAM</td>
<td>100</td>
<td>100 x 10^{-9}</td>
<td>1 minute 40 sec</td>
<td>256 GB</td>
</tr>
<tr>
<td>PCIe Flash</td>
<td>50,000</td>
<td>50 x 10^{-6}</td>
<td>14 hours</td>
<td>1 TB</td>
</tr>
<tr>
<td>Flash Disk</td>
<td>500,000</td>
<td>0.5 x 10^{-3}</td>
<td>5 days</td>
<td>10TB</td>
</tr>
<tr>
<td>Rotating Disk</td>
<td>7,000,000</td>
<td>7 x 10^{-3}</td>
<td>3 months</td>
<td>100TB</td>
</tr>
<tr>
<td>Tape</td>
<td>10,000,000,000</td>
<td>1 x 10^{-1}</td>
<td>3 centuries</td>
<td>Petabytes</td>
</tr>
</tbody>
</table>

© Copyright 2013 EMC Corporation. All rights reserved.
Database Storage Tiering (ILM)

Traditional deployment
Database Storage Tiering (ILM)
Growing database sizes

- Most users: Requesting recent data
- Some users: Requesting older data
- Few users: Requesting historic data

- All orders
 - Q1 Orders
 - Q2 Orders
 - Q3 Orders
 - Q4 Orders

- Previous Orders

- All users: Searching all data
 - All data: On fast disk

- All disks: Underutilized
 - Performance: Below optimal

© Copyright 2013 EMC Corporation. All rights reserved.
Database Storage Tiering (ILM)

Implementing ILM

- **All Orders**
 - Q1 Orders
 - Q2 Orders
 - Q3 Orders
 - Q4 Orders
 - Previous Orders

- **Enterprise Flash Drives**
 - 30x faster than disk

- **Standard Disk Drives**
 - Good performance / Capacity

- **Large Capacity Disk**
 - High Capacity / Low power

- **Most users**
 - Requesting recent data
 - Search small subset of data. Faster queries

- **Some users**
 - Requesting older data
 - On large low cost disk. Less power/cooling

- **Few users**
 - Requesting historic data
 - Optimally utilized. No excess capacity

- **Performance**
 - Improved throughput. Lower response times

© Copyright 2013 EMC Corporation. All rights reserved.
Automated Intelligence
EMC Fully Automated Storage Tiering (FAST VP)

Ultra-Performance Tier
Hottest data resides on PCIe Flash

Performance Optimized
Apply different technology as data cools
FAST VP And Oracle Databases

- Oracle DB tends to stripe across many LUNs
 - Using LVM striping (like ASM) or using many filesystems and db files
- Users tend to access the most current data
 - Small portions of data are very active and keep changing over time
- Optimization for cost/performance
 - Full ILM strategy (complex/tedious)
 - Let FAST VP do it!
- FAST VP and Sub-Lun Tiering
 - Works very well with Oracle databases and ASM
The Big Payback

CPU Utilization

DB CPU Cores
Best Practices (1)

EMC recommends various settings for good performance. Examples:

- Linux Hugepages
 - Reduces CPU overhead in managing Linux memory management
- Linux I/O scheduler
 - Elevator or deadline? Or CFQ?
- Queue depths
 - Tradeoff between response time and throughput
- EMC Powerpath for load balancing
 - Works better than native or 3rd party “MPIO”-style balancers
 - Linux MPIO is known to sometimes chop large I/O into 4K chunks (bad)
Best Practices (2)

- Disk alignment
 - Use 64K or 1MiB (both are fine)
 - Linux “fdisk” creates 31.5K “misaligned” partitions – resulting in overhead
 - More info: http://bartsjerps.wordpress.com/2013/03/28/linux-alignment-reloaded/

- REDO logs
 - 100% sequential write
 - No duplexing required unless 3rd party vendors require this (has no benefit for protection)
 - Don’t make larger REDO log groups than needed
 - “External redundancy” - EMC is very good at data protection, don’t spend precious host CPU and I/O cycles on that
 - Where possible, dedicate physical disk groups for REDO. RAID-5 FC/SAS is fine. Sharing with other DBs is fine.
 - Where possible, dedicated I/O channels might reduce response times (avoid REDO IO having to wait for background DB writer I/O for example)
Best Practices (3)

- **Striping**
 - Oracle 11.2: defaults to coarse striping for REDO. Change back to FINE striping (128K)
 - Avoid striping for everything else (both ASM and FAST-VP avoid hotspots anyway)
 - Really avoid double striping (can kill all prefetch / performance algorithms)

- **ASM**
 - Separate ASM disk groups
 - Increase default ASM AU size to \(\geq 8\)MB (recommended 16MB)
 - REDO logs, FRA/ARCH, TEMP and regular data files
 - Sometimes it makes sense to go beyond that and split some index/data

- **TEMP**
 - Create TEMP on dedicated FLASH/EFD if DB uses TEMP for sorting/joining etc
 - TEMP generates random read/write which is boosted by using Flash
Best Practices (4)

- Remote Replication
 - Asynchronous SAN replication typically has ZERO performance impact but still guarantees consistency
 - And reasonable RPO for many applications (~ 5 to 10 minutes)
 - Use SYNC only where really needed (such as financial processing)
 - No matter if you use Data Guard or SAN replication (i.e. SRDF, Recoverpoint)

- Database init parameters
 - Don’t modify things for performance POCs that you wouldn’t modify in production
 - Such as block checksum “disabled” settings and other exotic stuff
 - We’re in search of realistic, predictable, not just “breaking the record” performance numbers
 - DB block size: 8KB (DWH benefits from ≥16K sometimes). Never go lower than 8K!
Best Practices (5)

• Queue depths
 – Large queue depth: more throughput
 – Small queue depth: better response time
 – No silver bullet / single recommendation

• Consistent, predictable “good” performance is better than unpredictable, unreliable “Guinness World Records” performance
 – Can athletes consistently achieve world records? Or once in a lifetime?
 – So test performance also under “special conditions”
 – Such as disk failures, broken cables/channels, during RAID rebuilds, with SYNC replication enabled (i.e. Data Guard or EMC SRDF), when performing DB cloning using snaps/clones, when users are submitting crazy table scans, ...
 – During backups / restores (same server or same cluster / shared infra)
Best Practices (6)

- **Oracle RAC?**
 - Can sometimes cause more problems than improvements due to RAC interconnect traffic
 - A workload that requires 30 CPU cores is typically better off with a 32-core single-node server than a 2-node 16-core/node cluster
 - Use when you need extreme availability (mostly not performance as large single-node servers do better)
 - In that case, consider Oracle RAC stretched clusters (with [EMC VPLEX](#))
 - Generic HA (cluster) tools can offer quick failover times as an alternative
 - And don’t forget license cost

- **Beware of CPU Overhead**
 - Specific hypervisors: 4% (as measured by EMC IT)
 - Oracle RAC: no hard numbers (but most would agree it’s at least 10%)
 - Host replication (i.e. ASM redundancy, log shipping): ~ 1-2% CPU + mirrored writes
 - Don’t run anything else on DB server except DB processing! (No apps, middleware, mgt agents, ...)
Best Practices (7)

- IP based protocols
 - (Direct) NFS as good as Fiber Channel these days
 - Provided one applies all best practices (jumbo frames, non-blocking switches, 10GigE, ...)
 - Excellent alternative to ASM, dNFS = 100% NFSv3 compliant (no vendor-specific magic)

- Exotic filesystems?
 - Avoid ZFS for primary datafiles (heavy fragmentation and other issues, requires lots of tuning)
 - Avoid OCFS/OCFS2 (performance, I/O chopping™ into 4K, not mainstream)
 - Other filesystems: YMMV ;-
 - Be prepared for lots of “Evil” tuning of bottlenecks
 - Filesystems use RAM that otherwise could be allocated to SGA
 - And prefetch less efficient than DB itself
 - Beware of heavy memory paging / thrashing
RAID levels & disk types for Oracle datafiles

- **Data / Index**
 - Read and Write
 - Large & small I/O
 - Both Random & sequential
 - RAID-5 is OK, RAID-1 is (a bit) better
 - Avoid RAID-6 (and RAID-6 - like)
 - Split tablespaces if you need to squeeze out that extra 5%
 - Isolate from REDO, ARCH, FRA, etc on physical disk level
 - A bit of FLASH a day keeps the performance doctor away
 - Auto-tiering (FAST-VP)!

- **REDO logs**
 - 100% sequential write
 - RAID-1 or RAID-5 (both are OK)
 - No need for 15K rpm (but use this if rest of system also uses 15K)
 - FC/SAS is OK (no need for EFD/Flash)
 - Preferably on dedicated physical disks (if redo I/O is high)
 - Sharing with other databases is fine
 - Tune for fast write response times of small block I/O
 - Exclude from tiering
RAID levels & disk types for Oracle datafiles

• Binaries
 – Any (reliable) storage is OK

• TEMP
 – Separate if high DB TEMP usage
 – Very random I/O pattern (if used)
 – Used for joins / sorts / aggregates
 – And Index builds (+ reorg?)
 – On Flash/EFD where needed
 – Regular tier is OK if no high TEMP usage (shared with DATA)

• FRA/ARCH
 – Confusion: used for both Archive logs and backup files, and Flashback logs...
 – All three are good candidates for RAID-6 SATA (cost-effective) as performance is not very important
 – Sometimes contains control files as well (tricky with replication) – avoid!
REDEFINE THE POSSIBLE DATABASES
EMC CAN HELP YOU
LEAD YOUR TRANSFORMATION

Sam Marraccini
Flash Technology Evangelist
EMC Flash Products Division
Sam.Marraccini@emc.com
@SamMarraccini
www.InsideFlash.com

Bart Sjerps
Advisory Technology Consultant - EMEA
Oracle, Business Intelligence & Data warehousing Solu
tbart.sjerps@emc.com
Blog: http://bartsjerps.wordpress.com
+31-6-27058830