Redefining Oracle Infrastructure with Flash & DellEMC

Storage, Backup and Protection for Oracle Environments

Bart Sjerps | Principal Systems Engineer | Oracle Specialist - EMEA
bart.sjerps@dell.com | +31-6-27058830
http://bartsjerps.wordpress.com
Oracle Customer Challenges

Too Much Time & Budget Spent Maintaining Oracle

Which Tasks Are Consuming Most DBA Time?

- Diagnose Database Performance Issues: 75%
- Oversee Backup, Recovery, Replication & Failover: 71%
- Capacity Planning: 61%
- Install & Test Upgrades & Patches: 59%

Which Areas Would You Like To Invest More?

- Database Consolidation: 39%
- Migrating Or Upgrading Databases: 39%
- Research New Oracle Features: 36%
- Upgrade Hardware & Processors: 34%

Time Spent on Maintenance

- Testing & QA: 25%
- Creating & Maintaining Copies of DB: 37%
- Applying Upgrades, Fixes & Patches: 40%
- Maintaining Uptime & Availability: 44%
- Performance Tuning & Diagnosis: 48%

Top 5 Database Activities
(Source: 2014 IT Resource Strategies Survey)
Dell EMC Solutions for Oracle

Rock-solid Infrastructure
Reliable, scalable, flexible, efficient, no lock-in

Predictable High Performance
Removing all I/O bottlenecks, maximize CPU efficiency

Extreme Availability
Avoiding downtime or reduced service levels

Re-platforming & Virtualization
Optimal license cost and efficiency, enabling the cloud

Database and app cloning
Replicas with a push of a button (for backup, refresh, analytics, maintenance or troubleshooting

Backup & Protection
Lightning fast backup, instant restore, minimal space required, always consistent

Time to deploy
Reference Architectures, Validated Designs, Converged / Engineered systems

Services
Joint Escalation Center, World-class support

1995–Present
80,000+ joint customers
Performance
Databases should not have I/O Wait

Everything should be a CPU problem

• Adding CPU does not speed up I/O bottlenecks
 – Memory does somewhat

• IOPS are relatively (!) cheap

• CPU cycles are expensive
 – Because of licenses

• Consolidation can lead to
 – Higher IO requirements
 – I/O bottlenecks
 – Bandwidth issues
 – Backup window limitations

• Flash storage can solve these limitations

Storage is no longer the bottleneck

Make sure the system is CPU bound!
Spinning Disk vs Flash

Spinning disk is 60+ years old and slowly dying

- One seek at a time
- Mechanical latency (7ms)
- Max 150 random IOPS
- Good at sequential IO
- No write penalty

VS.

- Parallel requests (0.1 ms)
- No mechanical latency
- Virtually unlimited IOPS
- Good at sequential IO
- Write penalty compensated by controller (cache, leveling)

“When 900 years old you reach
Look as good you will not”
-- Yoda (Return of the Jedi)
I/O bound DB server

4 hours time wasted by high-latency random reads

<table>
<thead>
<tr>
<th>Event</th>
<th>Waits</th>
<th>Time(s)</th>
<th>Avg wait (ms)</th>
<th>% DB time Wait Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>db file sequential read</td>
<td>1,420,110</td>
<td>14,362</td>
<td>10</td>
<td>92.7 User I/O Configurat</td>
</tr>
<tr>
<td>Free buffer waits</td>
<td>89,072</td>
<td>986</td>
<td>11</td>
<td>6.4 Configurat</td>
</tr>
<tr>
<td>DB CPU</td>
<td>158</td>
<td>371</td>
<td>1.0</td>
<td>.3 Concurrency</td>
</tr>
<tr>
<td>library cache lock</td>
<td>138</td>
<td>51</td>
<td></td>
<td>.1 Configurat</td>
</tr>
<tr>
<td>write complete waits</td>
<td>9</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
After moving to All-Flash

<table>
<thead>
<tr>
<th>Event</th>
<th>Waits</th>
<th>%Time</th>
<th>Total Wait Time (s)</th>
<th>Avg wait (ms)</th>
<th>Waits /txn</th>
<th>% DB time</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct path read</td>
<td>361,425</td>
<td>0</td>
<td>930</td>
<td>3</td>
<td>7,376.0</td>
<td>16.4</td>
</tr>
<tr>
<td>db file parallel read</td>
<td>365,088</td>
<td>0</td>
<td>898</td>
<td>2</td>
<td>7,450.8</td>
<td>15.9</td>
</tr>
<tr>
<td>db file scattered read</td>
<td>64,628</td>
<td>0</td>
<td>114</td>
<td>2</td>
<td>1,318.9</td>
<td>2.0</td>
</tr>
<tr>
<td>db file sequential read</td>
<td>56,748</td>
<td>0</td>
<td>84</td>
<td>1</td>
<td>1,158.1</td>
<td>1.5</td>
</tr>
<tr>
<td>gc cr multi block request</td>
<td>137,524</td>
<td>0</td>
<td>62</td>
<td>0</td>
<td>2,806.6</td>
<td>1.1</td>
</tr>
<tr>
<td>direct path read temp</td>
<td>19,942</td>
<td>0</td>
<td>44</td>
<td>2</td>
<td>407.0</td>
<td>0.8</td>
</tr>
<tr>
<td>read by other session</td>
<td>17,389</td>
<td>0</td>
<td>31</td>
<td>2</td>
<td>354.9</td>
<td>0.6</td>
</tr>
</tbody>
</table>

- Avg. latency went down by more than 70%
- CPU utilization doubled
The IOPS race is over

Million IOPS? 2 million IOPS? 5 million IOPS? Who cares?

--- GAME OVER ---

YOU FIRED 25 ROUNDS OF AMMO IN 30 SECONDS.
YOU DESTROYED 5 ENEMY SPACESHIPS.
(HIT 'RETURN' TO PLAY AGAIN)

Every flash vendor these days offers:

Huge IOPS numbers
Very low latency

Average small AFA: >> 200K IOPS
Average large DB: << 50K IOPS

Competing in the FLASH business is not about IOPS and latency any more *)
-- Bart Sjerps, 2016

*) Considering generic Oracle workload consolidations here - Large scale DWH/BI is a special case.

What are differentiating features of Flash solutions for databases - if it isn’t IOPS and latency?
XtremIO Data Services

Always-on, Inline, Zero Penalty

- Always On Thin Provisioning
- Inline Data Deduplication
- Inline Data Compression
- Inline Data Encryption
- Flash Optimized Data Protection
- Writable Copies

Up To 6:1 Database Reduction On Average
Just For Production Databases
Obsolete Storage Practices

Simplify Architecture and operational management

Under-allocation (disk “short stroking”)

Striping

Data Separation

Pre-fetching (attempting to predict the future)

Monster caches (preloading everything)
More Obsolete Practices

Full data copies
(Avoiding I/O interference)

Direct Attached Storage
(Trading redundancy & sharing for bandwidth & cost)

Classic RAID
(Having only one extra safety rope)

Storage Layers / Tiering
devil’s dilemma: performance or economics
The Quick & Dirty Dedupe Analyzer

Figure out how much efficiency savings are possible

- Linux tool to scan disks, files and data streams for duplicate blocks
- Can scan a running system
- Safe & Fast
- Variable blocksize
- Free (Open Source)
- Bonus: Compression and thin analysis
- Based on C++ / SQLite as Key-value store
- Run your own queries against the data

QDDA Landing page

The best thing about being me… There are so many “me”s.

— Agent Smith, The Matrix Reloaded
```
[root@db11 ~](-) # qdda /dev/oracleasm/* -b0
qdda 1.5.1 - The Quick & Dirty Dedupe Analyzer
File 01, 524288 blocks, 4096 MiB processed, 0 MB/s, 257 MB/s avg, Processing took 2.75 sec
File 02, 262144 blocks, 2048 MiB processed, 0 MB/s, 393 MB/s avg, Processing took 0.60 sec
File 03, 131072 blocks, 1024 MiB processed, 0 MB/s, 282 MB/s avg, Processing took 0.62 sec

blocksize = 8 KiB

total = 7168.00 MiB ( 917504 blocks)
free = 2978.05 MiB ( 381190 blocks)
used = 4189.95 MiB ( 536314 blocks)
unique = 3434.32 MiB ( 439593 blocks)
deduped 2x = 177.36 MiB ( 22702 blocks)
deduped 3x = 128.15 MiB ( 16403 blocks)
deduped 4x = 0.04 MiB ( 5 blocks)
deduped >4x = 0.05 MiB ( 6 blocks)
deduped total = 3739.91 MiB ( 478709 blocks)
stream compressed = 394.79 MiB ( 89.44 %)
compress buckets 2k = 855.68 MiB ( 438110 buckets)
compress buckets 4k = 96.67 MiB ( 24748 buckets)
compress buckets 8k = 123.84 MiB ( 15851 buckets)
total compressed = 1076.19 MiB ( 137752 blocks)

*** Summary ***
percentage used = 58.45 %
percentage free = 41.55 %
deduplication ratio = 1.12
compression ratio = 3.48
thin ratio = 1.71
combined = 6.66
raw capacity = 7168.00 MiB
net capacity = 1076.19 MiB
```

Keep Calm and run your Oracle workload on xtremIO
Still need more?

ENGINE POWER

Lots is good
More is better
Too much is just enough
Innovation: NVMe I/O protocol

"TAFKAD": PCIe Direct Access to SSD

- 10M IOPS
- 100 GB/s
- <0.1 ms

Enterprise Readiness
- Data protection
- Redundancy
- Consistent performance

Tradeoff: Data services ⇒ Future
Availability
Oracle Fault Resilience

Where are the limitations in this picture?

- Node failure: ✔
- Planned maintenance: ✔
- Storage failure: ❓
- Site failure: ❓
Classic solution

Host based mirroring

• Typically via ASM Mirroring
• Appears simple at first glance
• Devil is in the details
 – Link failure?
 – Resilvering?
 – Cloning/snapshots?
 – Data integrity?
 – I/O overhead?
 – Configuration mistakes?
 – Failure groups?
 – Split Brain issues?
 – Scaling # of nodes?
 – Application failover?
Dell EMC Solution

Keep it simple

• No changes on host level
 - Except adjusting timeouts
• No complex configuration
 - Reduces risk of configuration errors
• DB/Hosts are unaware of replication
 - Complexity is hidden
 - No failure groups
• Survives split brain issues
 - Due to the witness
 - No “NFS arbitration” required
• Applications “follow” Database
 - If placed on the same infrastructure
• No failover when storage unavailable
• No host overhead
• No DB performance impact for re-sync
• Plays nice with snapshots/cloning

→ Also available as native VMAX solution (SRDF Metro vs VPLEX)
Database Re-platforming

Goals

1. Maximize use of license investment
2. Maintain or (better even) improve performance
3. Reduce downtime / increase SLAs
4. Avoid Vendor lock-in
5. Simplify server & storage refresh cycles
6. Speed up provisioning of new databases
7. Improve security, compliance and auditing
8. Simplify management
Why look at Oracle licensing?

- Oracle DB licensing is expensive
 - Midsize server (44 cores):
 - HW ~ $ 50,000
 - SW ~ $ 913,000 @ 50% discount
 - 5 year maintenance ~ $1,000,000
 (Enterprise Edition + basic options)
 - What if we add RAC? Active DG? Multitenant?

- Large part of the TCO of a database infrastructure stack

- Many DB servers are poorly utilized
 - CPU 90% idle is not unusual

Validation: Wikibon Research

Traditional Database License is 82% of Total System Cost

Source: © Wikibon April 2013 - See Table 1 & 2 in Footnotes for Detailed Calculations & Assumptions

Wikibon Article: Virtualization of Oracle Evolves to Best Practice for Production Systems
Before we start…

Beware of the license demon

Are you 100% “bet your paycheck” sure that you’re compliant™

If needed... Bring in the superheroes. They help you with licensing & legal issues

Licenseconsulting.eu
House of Brick
Madora Consulting UK
Support & Licensing

- Oracle is **FULLY** supported on VMware
 - Including Oracle RAC
 - Any other claim is **FALSE**
 - Platform certification is NOT required
 - Escalation paths exist from Oracle/DellEMC and VMware to avoid fingerpointing
 - Need to reproduce on physical is RARE but easy with Dell EMC (using clones)

- All potential licensing problems can be avoided
 - Including recent Oracle myths about Vsphere 5.5 and Vsphere 6 (cross-vcenter vmotion)
 - You only need to license servers where Oracle is installed and/or running (nothing else)

- Performance scaling & overhead is no issue
 - 1 VM: 128 vCPU, 4TB memory, 1M+ IOPS
Transaction cost versus Utilization

Cost per TPS for a four-node Oracle RAC 11g cluster running EE
Software license cost: around $2,200,000
TPS: Around 4,000 at peak utilization

$\$$ per transaction increases as utilization decreases
Classic problem of Resource Management
Applied to Database processing power

Performance problem

Under-utilized resources

Total: 221%
Available: 800%
Avg: 30%
Resource Management “Mainframe style”

VMware DRS / HA cluster

- Move CPU resources / workloads where needed
- Assign CPU & memory “shares” to guarantee Production SLAs
Traditional vs Optimized

Typical legacy database server farm:
- Physically deployed
- Oversized
- Outdated platforms
- Very poor CPU utilization
- IO & CPU bottlenecks
- Servers running mix of:
 - Apps, middleware & DB
 - Tooling
 - Replication & Backup

Optimized database server farm:
- Virtualized
- Significantly less CPUs on Modern HW
- High average CPU utilization
- No I/O bottlenecks
- Sized correctly
- Servers running ONLY Oracle
- Minimal required licenses & options
AVOIDING THE VMOTION TRAP

Do’s

• Prevent “illegal” Vmotion moves by creating multiple barriers
• Keep Vmotion audit trails
• Watch the IOUG “straight talk” video on my blog

• **Hire external licensing expertise**

Don’ts

• Believe Oracle sales reps
• Give LMS all info they ask for
• Run hypervisors that don’t achieve TCO reduction

Know

• You only have to license Oracle where it IS running (not where it might run in the future)
• Oracle FUD/Scare tactics
5 Steps to maximize cost efficiency

1. Hardware Replatform for lowest $ / transaction
 Get the best CPU type for transactional workload
 Eliminate I/O problems, backup window, etc

2. Virtualize servers to drive up CPU utilization
 Make sure you stay compliant

3. Remove unnecessary licensed options
 Or go to different license model (i.e. Standard Edition)

4. Only run DB transactions on licensed CPU
 Run other stuff elsewhere

5. Re-negotiate license contracts →
 Suspend maintenance, etc
 Avoid non-compliance, audits, support issues, …
 Use independent license expert services!
Cloning
Benefits of instant database copies (cloning)

- "Serverless backups" & Quick restores
 - Zero production performance impact
 - RTO seconds to minutes
 - Protected & Instant restores
 - Out-of-order restores
 - Instant Restore from remote copies
- Firefighting
 - Creating a quick production copy to solve application problems (VMware Virtual-to-Physical)
 - Without messing with production data
- Creating Test / Dev / Acceptance copies
 - Automated, no tape restores, low people effort
- Creating copies for reporting / staging / analytics
 - Data warehouse queries can bring production performance down
 - Moving reporting workload to copy relieves production
- Application / Database Upgrades
 - Creating application "checkpoints" avoids having to fall back to starting point due to small errors
 - Easy upgrade testing
Storage Replication - Innovations

1997: EMC Timefinder (Full copy)

2000’s: Snapshots (incremental)

Today: Virtual copy (differential)
Data Protection
Backup Optimization

Limitations of traditional approaches

• Real world (extreme) example:
 - Customer with several 1-2 Terabyte databases (tier 1 production)
 - SLA demands 2x full backup / day, Retention: 1 Month
 - Tape capacity required for a 2 TB database: 2 TB * 2 copies / day * 31 days = 124 TB tape

• Considerations
 - How much savings would be achieved when reducing DB by 20% ?
 - What if we could store only 1 full copy plus 61 delta sets?
 - What if we need 6 months retention?
 - How fast can we recover from backup using tape?
 - Is it reliable?
 - What's the performance impact on production?
 - What's the backup window?
Oracle Backup to Data Domain

- **Full Backup**
- **RMAN Catalog**
- **Oracle Database**
- **Local Data Domain System**
- **Database**

- ✓ **Compression**
- ✓ **Encryption**
- ✓ **Standard (d)NFS or Tape emulation**
- ✓ **No 3rd party backup tool**

Presenter: Bart Sjerps
Oracle Backup to Data Domain

Dedupe makes backup fast and secure.
No extra backup software or catalogs. No tape.
Daily full backups?

Backups set blocks unchanged from original full/level 0

New or changed blocks
DD Boost

Reducing backup window & network traffic

Boost de-dupes at source, dramatically accelerating RMAN backups

- 99% Less Bandwidth
- 50% Faster Backup
Dell EMC ProtectPoint

- Instant backups
- Instant restores
- No IO flow on DB host
- Partial restores
- RMAN catalog
Time to deploy
DellEMC Converged Systems

Various deployment models – pre-tested, built, validated, one-stop support

Hyper-Converged Appliance
- Easy to Use
- Low Cost
- Start Small & Grow

Hyper-Converged at Rack-Scale
- Scale Small to Big
- Software Defined
- Lowest TCO at Scale

Converged Infrastructure
- Scalability
- Rich Data Services
- TCO
Services & Solutions
The EMC Oracle Joint Escalation Center

EMC and Oracle have supported each other's products since 1995 and both spent millions of dollars in making them work together. EMC actually became famous in the late nineties because of our "Guilty until proven innocent" support mentality. We are known for the fast company to give meaning to the concept of "Remote Support / Phone Home", and the success stories still go around that EMC field engineers sometimes surprised customers with a visit in order to repair components (mostly disk drives), often before they were broken, and if they were actually broken the customers would not even notice (needless to say that replacements were done online).
EMC/Oracle Solutions Center

- Shared services for Oracle & EMC
 - Over 500 servers
 - Over 1PB EMC storage
 - Fully Virtualized on VMware

- Provides infrastructure for
 - Oracle’s Training & demos
 - EMC Demos
 - EMC POCs

- Oracle Integration Demos
 - Storage integration, cloning & replication
 - HA Stretched clusters
 - Management tooling

Leverage EMC at Oracle Solution Centers
References

My Blog “Dirty Cache”
http://bartsjerps.wordpress.com

Everything Oracle @ EMC (community):
http://emc.com/everythingoracle

XtremIO
http://xtremio.com/

Outrun:
http://outrun.nl

Stop Idling — Start Saving

One of my missions is to help customers saving money (Dirty Cache Costs). So considering the average enterprise application environment, I frequently ask them where they spend most of their IT budget on. Is it servers? Networks? Middleware? Applications?

Turns out that if you look at the operating cost of an Oracle database application, a very big portion of that TCO is in database licenses. Note that I focus on Oracle (that’s my job) but for other databases this cost side might be similar. Or not. But it makes sense to look at Oracle as that is the most common platform for mission-critical applications. So let’s look at a database environment and forget about the applications for now.

Let’s say that 50% of the operating cost of a database server is spent on Oracle licensing and maintenance.